Stormwater Management Plan

for

Medical Office Building

Proposed Site Plan

Block 106, Lot 6

City of Northfield Atlantic County, New Jersey

Prepared by:

CONSULTING ENGINEERS AND PLANNERS

DeBlasio & Associates

4701 New Jersey Avenue Wildwood, NJ 08260 Phone: 609.854.3311

December 2021

Marc A. DeBlasio, PE Professional Engineer New Jersey License No. 41599

Table of Contents

Site Information1
Design Objectives1
Non-Structural Stormwater Management Strategies2
Stormwater Runoff Rates & Volume4
Existing Runoff4
Proposed Runoff5
Soil Erosion & Sediment Control Standards6
Runoff Quality6
Groundwater Recharge
Groundwater Mounding7
Summary7

Appendices

Appendix A – Pre-Development Conditions
Appendix B – Post Development Conditions
Appendix C – NJDEP Water Quality Storm
Appendix D – Soil Boring Logs
Appendix E – NJDEP Nonstructural Point System Spreadsheet
Appendix F – Low Impact Development Checklist
Appendix G – NJGRS Groundwater Recharge Spreadsheet
Appendix H – Groundwater Mounding Calculations
Appendix I – Drainage Area Maps

Site Information

This development plan proposes to subdivide and complete site improvements at the property known as Block 106 Lot 8 in the City of Northfield, NJ. The project will include subdividing a new, 175' x 200' lot from existing Block 106 Lot 8 to allow for the construction of an approximate 5,116 square foot medical office building with associated parking. The plan has been developed in accordance with the standards of the Development Ordinances of the City of Northfield, as well as the New Jersey Department of Environmental Protection. Additional improvements to the site include driveways, utilities, and stormwater management.

The subject property is shown as Block 106, Lot 8 on the current tax maps for the City of Northfield. The proposed improvements are detailed on the plans entitled <u>Pre & Post</u> <u>Development Drainage Boundaries, Major Site Plan, Proposed Medical Office, Block 106, Lot 8,</u> <u>City of Northfield, Atlantic County, New Jersey as prepared by DeBlasio & Associates.</u>

The site is located in the R2, Residential Zone district, as shown on the City of Northfield Zoning Map.

Design Objectives

This stormwater management plan has been developed in accordance with the current requirements of the Stormwater Management section of City's Land and Site Plan Review Design Standards Ordinance (Chapter 325). These standards are consistent with the New Jersey Stormwater Best Management Practices (BMP) Manual.

The specific performance standards for stormwater management plans are outlined in Chapter 325 of the City's Ordinance. More specifically, this Drainage and Stormwater Management Plan will demonstrate compliance with the following:

- A. The nine (9) non-structural stormwater management strategies found in Subchapter 5 of the NJDEP Stormwater Management Rules (NJAC 7:8-5);
- B. The maximum stormwater runoff rates and volume;
- C. The standards for groundwater recharge;
- D. Soil erosion control standards; and
- E. Stormwater runoff water quality.

Non-Structural Stormwater Management Strategies

As stated above, City Ordinance requires that a stormwater management plan incorporate, to the maximum extent possible, the nine (9) non-structural stormwater management strategies identified in Subchapter 5 of the NJDEP Stormwater Management Rules.

The nine strategies are listed below with an explanation as to how the proposed development attempts to incorporate each strategy, to the maximum extent possible.

1. Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.

The site provides sufficient soil stabilization to prevent erosion and sediment loss from the site.

2. Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces.

Although the proposed development contains an increased amount of imperious area, the flow of runoff over the impervious areas is minimized by providing multiple points of inflow into the stormwater management areas.

3. Maximize the protection of natural drainage features and vegetation.

The development plan does not require any proposed clearing to complete the necessary improvements.

4. Minimize the decrease in the pre-construction time of concentration.

The proposed development plan minimizes the decreases in the pre-construction time of concentration by retaining a large a portion of the runoff volume generated in the on-site stormwater management areas located on the site. The storage areas are each designed to collect runoff from the site, retain it and infiltrate as much of it as possible, and then regulate the outflow to the site discharge point.

5. Minimize land disturbance including clearing and grading.

The proposed development plan has been designed such that the clearing will be limited to that that which is necessary to create the proposed improvements. Additionally, the amount of cut and fill areas has been minimized, thereby reducing the total amount of land grading necessary.

6. Minimize soil compaction.

As stated above, the development plan has been created to limit the amount of cut and fill required to only that which is necessary for the construction of the improvements. By limiting the amount of cut and fill, the amount of soil compaction has also been minimized.

7. Provide low maintenance landscaping that encourages retention and planting of native vegetation and minimizes the sizes of lawns, fertilizers and pesticides.

The landscaping included in the development plan consists mainly of low maintenance, native species and limits the number of ornamental species. This low-maintenance approach will limit the amount of fertilizers and pesticides used on the site.

8. Provide vegetated open-channel conveyance systems discharging into and through stable vegetated areas.

The proposed development plan retains a large portion of the stormwater runoff and infiltrates in on-site. This allows any sediment collected in the runoff to settle and not be discharged off-site, thereby improving the water quality of the runoff.

9. Provide other preventative source controls to prevent or minimize the use or exposure of pollutants at the site in order to prevent or minimize the release of those pollutants into stormwater runoff. These source controls include, but are not limited to:

- *a.* Site design features that help to prevent accumulation of trash and debris in drainage systems;
- *b.* Site design features that help prevent discharge of trash and debris from drainage systems;
- C. Site design features that help to prevent and/or contain spills or other harmful accumulations of pollutants at industrial or commercial developments; and

d. When establishing vegetation after land disturbance, applying fertilizer in accordance with the requirements established under the Soil Erosion and Sediment Control Act (NJSA 4:24-39 et. seq.) and applying rules.

The development plans include the use of stormwater facilities that meet the standards promulgated by the NJDEP's Stormwater Management Rules. The development plan requires approval from the Cape Atlantic Soil Conservation District. The proposed stabilization of the disturbed areas meets with the standards of the Cape Atlantic SCD.

To determine if the proposed development plan meets the requirements for nonstructural stormwater strategies, the NJDEP developed the Nonstructural Strategies Points System Spreadsheet. This spreadsheet quantifies the proposed nonstructural strategies implemented by a proposed development. Appendix E contains a copy of the completed spreadsheet for the proposed development. Since the project is located within a Metropolitan Area, the site is considered to be located in State Planning Area 1 (PA-2) for the purpose of determining the adequacy of the nonstructural stormwater strategies. Accordingly, the proposed development is required to maintain 78% of the points calculated for the existing conditions of the site. As demonstrated in the spreadsheet, based on the existing land use and cover, the site scores a total of 331 points. As a result of the nonstructural strategies implemented by the development plan, the proposed site scores a total of 326 points, or 98% of the existing points. Therefore, the development plan satisfied the requirement for nonstructural stormwater management strategies.

Stormwater Runoff Rates and Volume

Chapter 325-16R. (2)(c) details the required standards for stormwater runoff rates and quantity. More specifically, this section requires that the design must 'demonstrate that the peak postdeveloped stormwater runoff rates from the project site for the two-, ten-, and one-hundred-year storms are 50%, 75% and 80%, respectively, of the site's peak pre-developed stormwater runoff rates for the same storms.'

Existing Runoff

The existing site is comprised of one drainage area as shown on Sheet 11, found in Appendix I of this report. Based on the existing impervious areas and other land uses, the existing drainage areas have been assigned the appropriate curve numbers (CN). The existing site has been previously disturbed, and the surface now consists of an existing asphalt parking area and open grassed areas.

The existing drainage areas encompasses the entire site. There is a minor depression in the grassed area on the south side of the site which provides minor detention of the existing stormwater runoff prior to it being discharged from the site.

The following is a summary of the peak rates of runoff and the total runoff volumes for the existing pre-construction conditions for each of the design storms. A full accounting of the existing conditions can be found in Appendix A of this report.

Design Storm	Volume (acre-ft)	Peak Rate (cfs)
2	0.196	0.56
10	0.407	1.23
100	0.940	2.99

For Existing Drainage Area 1 (XA-01), Area = 2.540 ac, CN=98/61/58

Proposed Runoff

Due to the proposed development, the post-construction site will contain three (3) drainage subareas. The proposed subareas are detailed on Sheet 12, found in Appendix I of this report.

As a result of the development, the curve numbers for each of the proposed drainage areas will change. It is assumed that after development, all of the open space (lawns, swales, depressions, etc.) will be grassed and in good condition.

In accordance with the NJDEP Stormwater Rules, the proposed runoff for each proposed subarea has been calculated by considering the impervious and pervious areas separately. The Curve Numbers for each of the subareas have not simply been averaged, but separate hydrographs for the pervious and impervious areas have been calculated and then summed to create a final runoff hydrograph for the subarea.

Runoff from the site will flow towards the basins that will be constructed on the site. The basins will be located along the north, west and east property lines. The Runoff from the proposed asphalt parking lot will first be directed towards underground recharge prior to entering the basin. Runoff from the site will be controlled by the use of a weir out of Basin 1. The proposed discharge point is located at the north property line.

The following are summaries of the peak rates of runoff and total runoff volumes for each of the three subareas. The detailed calculations for each proposed drainage area can be found in Appendix B.

Design Storm	Volume (acre-ft)	Peak Rate (cfs)					
2	0.141	0.84					
10	0.255	1.57					
100	0.517	3.28					

For Proposed Drainage Area 1 (PR-01), Area = 1.110 ac., CN=98/61/58

For Proposed Drainage Area 2 (PR-02), Area = 0.39	0 ac., CN=98/61
---	-----------------

Design Storm	Volume (acre-ft)	Peak Rate (cfs)		
2	0.080	0.91		
10	0.131	1.49		
100	0.234	2.67		

For Proposed Drainage Area 3 (PR-03), Area = 0.920 ac., CN=98/58

Design Storm	Volume (acre-ft)	Peak Rate (cfs)					
2	0.034	0.10					
10	0.096	0.35					
100	0.270	1.10					

The Ordinance requires that the post-construction peak runoff rate is reduced to 50%, 75% and 80% of the pre-construction peak runoff rate for the 2-year, 10-year and 100-year storms, respectively. Due to the proposed development the size and composition (CN) of the proposed drainage areas, and the amount of impervious coverage has increased. Therefore, the proposed drainage areas must be routed through a stormwater management system to reduce the peak rate of runoff off-site. Runoff from Drainage Area 2 is collected by the proposed underground recharge that will be placed along the edges of the parking lot. Runoff from proposed Drainage Areas 1 and Drainage Area 3 is collected by the proposed stormwater management basin (Basin 1) that is located along the property edges. Runoff will be collected in each basin until the water level reaches the discharge point, which is controlled by a weir located along the northeastern property line. The proposed stormwater management controls all discharge from a 100 year storm.

The table below summarizes the total reduction in the existing peak flow for each of the design storms.

Design Storm	Peak Flow - Existing XA-01 (cfs)	Peak Flow -Target PeakReduced PeakExisting XA-01FlowOutlet(cfs)(cfs)(cfs)		Pre vs. Post Reduction
2	0.54	< 0.27 (50%)	0.00	0%
10	1.19	< 0.89 (75%)	0.00	0%
100	2.90	< 2.32 (80%)	0.00	0%

Since the peak rates of runoff at the existing discharge point has been reduced to a level that is less than 50%, 75% and 80% of the pre-construction peak rates for the 2, 10 and 100 year design storms, the proposed stormwater management system satisfies the requirements of the Ordinance for stormwater runoff rates.

Soil Erosion & Sediment Control Standards

The project site is located within the jurisdictional area of the Cape-Atlantic Soil Conservation District. Therefore, the proposed development plan will need to be certified by the SCD prior to the start of construction. Therefore, the plan will meet the requirements of the Ordinance and the SCD before construction begins.

Runoff Quality

The development plan is required to meet the standards for runoff quality as defined in the Ordinance and in the NJDEP Stormwater Rules. These standards require a total suspended solids (TSS) removal rate of 80%.

An infiltration basin provides a TSS removal rate of 80%, according to NJDEP regulations. To qualify as an infiltration basin, a proposed basin must fully store the NJDEP water quality storm (defined as 1 ¼" of rain over 2 hours) without exceeding a depth of 2 feet. Additionally, the maximum water surface elevation (WSEL) is well below the discharge point for the basin, so there is no

discharge from the basin for the water quality storm. Therefore, the proposed infiltration areas qualify.

Groundwater Recharge

The Stormwater Management Rules require that all proposed major land development have 100 percent of the difference between the site's pre- and post-development 2-year runoff volumes be infiltrated. There is no outflow from the basin for the 2-year storm. Therefore, all runoff volume for the post-development 2-year storm is infiltrated in the underground storage areas. The New Jersey Groundwater Recharge Spreadsheet (NJGRS) has also been completed for this development and is included in Appendix G.

Additionally, the maximum depth of water in the storage system is 3 feet. Based on a conservative estimate for the permeability of the soils underlying the storage areas of 6 inches per hour, it is estimated that all runoff stored in the system will infiltrate in to the ground in approximately 6 hours, which is significantly less than the maximum allowable time of 72 hours.

Groundwater Mounding

A Groundwater Mounding analysis was completed to determine the impacts of the new stormwater management basin on the surrounding structures, stormwater management basins and septic systems. The methodology for the analysis is outlined in the United States Geologic Service's (USGS) publication entitled <u>Simulation of Groundwater Mounding Beneath</u> <u>Hypothetical Stormwater Infiltration Basins</u>. The methodology utilized is based on the Hantush equation and three-dimensional finite-difference groundwater-flow models.

The closest structure to the proposed basin is the new proposed building. Based on the groundwater model, the groundwater will not mound too close to the foundation of the new building. Since there is no basement proposed for the new building, the effects in this area are negligible. Additionally, the surrounding area is serviced by public sewer, so the effects of groundwater mounding on nearby septic systems is also negligible.

<u>Summary</u>

Due to the change in land use and the subsequent improvements made to the site, the total volumes of runoff between the existing and developed condition, as well as the rates of release, have decreased. The post-construction peak runoff rates have been reduced to less than 50%, 75% and 80% of the pre-construction peak runoff rates for the 2-, 10-, and 100-year storms, respectively. Therefore, the requirements of the ordinance have been met.

The groundwater recharge requirement has been met by recharging a runoff volume that is greater than the difference between the pre- and post-construction volume for the 2-year storm. There is no discharge from the site during the two-year storm. Therefore, the groundwater recharge requirements of the ordinance have been met.

The groundwater quality requirements of the ordinance have been met by the construction of an infiltration structure. The total TSS removal rate provided by the infiltration structure is 80%, which satisfies the requirement of an 80% minimum TSS removal.

Appendix A

Pre-Development Conditions

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
1.126	61	>75% Grass cover, Good, HSG B (XA1)
0.620	98	Impervious (XA1)
0.794	58	Woods/grass comb., Good, HSG B (XA1)
2.540	69	TOTAL AREA

_ExistingCMS Prepared by DeBlasio & Associates	Type III 24-hr 02_Year Rainfall=3.25" Printed 12/28/2021
HydroCAD® 10.00-26 s/n 11007 © 2020 HydroC/	AD Software Solutions LLC Page 3
Time span=5.00-20 Runoff by SCS TR-20 meth Reach routing by Stor-Ind+Tran	0.00 hrs, dt=0.05 hrs, 301 points od, UH=Delmarva, Split Pervious/Imperv. is method - Pond routing by Stor-Ind method
Subcatchment XA1: XA-01 Flow L	Runoff Area=2.540 ac 24.41% Impervious Runoff Depth>0.93" _ength=323' Tc=76.3 min CN=60/98 Runoff=0.56 cfs 0.196 af
Pond FD: Existing Depression	Peak Elev=26.49' Storage=1.691 cf Inflow=0.56 cfs 0.196 af
	Outflow=0.54 cfs 0.166 af
Pond Q: DISCHARGE	Inflow=0.54 cfs 0.166 af
	Primary=0.54 cfs 0.166 af
Total Runoff Area = 2.540 ac	Runoff Volume = 0.196 af Average Runoff Depth = 0.93

otal Runoff Area = 2.540 ac Runoff Volume = 0.196 af Average Runoff Depth = 0.93" 75.59% Pervious = 1.920 ac 24.41% Impervious = 0.620 ac

Summary for Subcatchment XA1: XA-01

Runoff = 0.56 cfs @ 13.11 hrs, Volume= 0.196 af, Depth> 0.93"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 02_Year Rainfall=3.25"

	Area	(ac) C	N Des	cription		
*	0.	620 9	98 Impe	ervious		
	1.	126 6	61 >75°	% Grass co	over, Good	, HSG B
_	0.	794 5	58 Woo	ods/grass c	omb., Goo	d, HSG B
	2.	540 6	9 Wei	ghted Aver	age	
	1.	920 6	60 75.5	9% Pervio	us Area	
	0.	620 9	98 24.4	1% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	52.8	222	0.0100	0.07		Sheet Flow, a-b
						Woods: Light underbrush n= 0.400 P2= 3.30"
	22.9	78	0.0100	0.06		Sheet Flow, b-c
						Woods: Light underbrush n= 0.400 P2= 3.30"
	0.6	23	0.0090	0.66		Shallow Concentrated Flow, b-c
						Short Grass Pasture Kv= 7.0 fps

76.3 323 Total

Subcatchment XA1: XA-01

Summary for Pond ED: Existing Depression

[82] Warning: Early inflow requires earlier time span

Inflow Area	=	2.540 ac, 2	4.41% Impervic	ous, Inflow Dep	pth > 0.93"	for 02_	Year event
Inflow	=	0.56 cfs @	13.11 hrs, Vol	ume=	0.196 af		
Outflow	=	0.54 cfs @	13.41 hrs, Vol	ume=	0.166 af, Atte	en= 4%,	Lag= 18.1 min
Primary	=	0.54 cfs @	13.41 hrs, Vol	ume=	0.166 af		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 26.49' @ 13.41 hrs Surf.Area= 8,021 sf Storage= 1,691 cf

Plug-Flow detention time= 96.6 min calculated for 0.166 af (85% of inflow) Center-of-Mass det. time= 53.9 min (912.2 - 858.2)

Volume	Inv	ert Ava	il.Storage	 Storage Descript 	ion		
#1	26.	00'	66,915 ct	Custom Stage	Data (Irregular)Liste	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim (feet	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
26.0	00	422	151.	0 C	0	422	
27.0	00	25,750	777.	9,823	9,823	46,653	
28.0	00	42,800	1,000.	33,916	43,739	78,200	
28.5	50	50,000	1,200.	23,177	66,915	113,218	
Device	Routing	In	vert Ou	tlet Devices			
#1	Primary	26	5.42' 10 He 2.5 Co 3.3	.0' long x 1.0' brea ad (feet) 0.20 0.40 50 3.00 ef. (English) 2.69 50 3.31 3.32	dth Broad-Crester 0 0.60 0.80 1.00 2.72 2.75 2.85 2.9	1 Rectangular Weir 1.20 1.40 1.60 1.80 98 3.08 3.20 3.28 () 2.00 3.31

Primary OutFlow Max=0.53 cfs @ 13.41 hrs HW=26.49' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.53 cfs @ 0.73 fps)

Pond ED: Existing Depression

Summary for Pond Q: DISCHARGE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.540 ac, 2	4.41% Imp	ervious,	Inflow De	pth >	0.7	9" for 02_	Year event
Inflow	=	0.54 cfs @	13.41 hrs,	Volume	=	0.166	af		
Primary	=	0.54 cfs @	13.41 hrs,	Volume	=	0.166	af, .	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond Q: DISCHARGE

_ExistingCMS Prepared by DeBlasio & Associates HydroCAD® 10.00-26 s/n 11007 © 2020 F	Type III 24-hr 10_Year Rainfall=5.07" Printed 12/28/2021 vdroCAD Software Solutions LLC Page 8								
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method									
Subcatchment XA1: XA-01	Runoff Area=2.540 ac 24.41% Impervious Runoff Depth>1.92" Flow Length=323' Tc=76.3 min CN=60/98 Runoff=1.23 cfs 0.407 af								
Pond ED: Existing Depression	Peak Elev=26.54' Storage=2,139 cf Inflow=1.23 cfs 0.407 af Outflow=1.19 cfs 0.375 af								
Pond Q: DISCHARGE	Inflow=1.19 cfs 0.375 af Primary=1.19 cfs 0.375 af								
Total Runoff Area = 2.5	0 ac Runoff Volume = 0.407 af Average Runoff Depth = 1.92"								

Runoff Area = 2.540 ac Runoff Volume = 0.407 af Average Runoff Depth = 1.92" 75.59% Pervious = 1.920 ac 24.41% Impervious = 0.620 ac

Summary for Subcatchment XA1: XA-01

Runoff = 1.23 cfs @ 13.10 hrs, Volume= 0.407 af, Depth> 1.92"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10_Year Rainfall=5.07"

	Area	(ac) C	N Des	cription					
*	0.	620 9	98 Impe	ervious					
	1.	126 6	61 >7 ⁵	% Grass co	over, Good	, HSG B			
	0.	794 3	58 Woo	ds/grass c	omb., Goo	d, HSG B			
	2.	540 6	69 Wei	ghted Aver	age				
	1.920 60 75.59% Pervious Area								
	0.	620 9	98 24.4	1% Imperv	ious Area/				
				-					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	52.8	222	0.0100	0.07		Sheet Flow, a-b			
						Woods: Light underbrush n= 0.400 P2= 3.30"			
	22.9	78	0.0100	0.06		Sheet Flow, b-c			
						Woods: Light underbrush n= 0.400 P2= 3.30"			
	0.6	23	0.0090	0.66		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			

76.3 323 Total

Subcatchment XA1: XA-01

Summary for Pond ED: Existing Depression

[82] Warning: Early inflow requires earlier time span

Inflow Area	=	2.540 ac, 2	4.41% Imperv	vious, Inflow De	epth > 1.92"	for 10_Year event	t
Inflow	=	1.23 cfs @	13.10 hrs, Vo	olume=	0.407 af		
Outflow	=	1.19 cfs @	13.35 hrs, Vo	olume=	0.375 af, Atte	en= 3%, Lag= 15.4	min
Primary	=	1.19 cfs @	13.35 hrs, Vo	olume=	0.375 af		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 26.54' @ 13.35 hrs Surf.Area= 9,368 sf Storage= 2,139 cf

Plug-Flow detention time= 59.0 min calculated for 0.374 af (92% of inflow) Center-of-Mass det. time= 35.5 min (898.1 - 862.6)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on		
#1	26.0	00'	66,915 cf	Custom Stage D	ata (Irregular)Liste	ed below (Recalc)	
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
26.0)0	422	151.0	0	0	422	
27.0)0	25,750	777.0	9,823	9,823	46,653	
28.0)0	42,800	1,000.0	33,916	43,739	78,200	
28.5	50	50,000	1,200.0	23,177	66,915	113,218	
Device	Routing	In	vert Out	let Devices			
#1	Primary	26	0.42' 10. Hea 2.5 Coo 3.3	0' long x 1.0' brea ad (feet) 0.20 0.40 0 3.00 ef. (English) 2.69 2 0 3.31 3.32	dth Broad-Crester 0.60 0.80 1.00 2.72 2.75 2.85 2.85	J Rectangular Weir 1.20 1.40 1.60 1.80 98 3.08 3.20 3.28 3.	2.00 .31

Primary OutFlow Max=1.19 cfs @ 13.35 hrs HW=26.54' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 1.19 cfs @ 0.95 fps)

Pond ED: Existing Depression

Summary for Pond Q: DISCHARGE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.540 ac, 2	24.41% Imp	ervious,	Inflow Depth	> 1.7	7" for 10_	Year event
Inflow	=	1.19 cfs @	13.35 hrs,	Volume	= 0.3	875 af		
Primary	=	1.19 cfs @	13.35 hrs,	Volume	= 0.3	875 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond Q: DISCHARGE

_ExistingCMS	Type III 24-hr	100_Year Rainfall=8.73"
Prepared by DeBlasio & Associates		Printed 12/28/2021
HydroCAD® 10.00-26 s/n 11007 © 2020 H	IydroCAD Software Solutions LLC	Page 13
Time span= Runoff by SCS TR-20 Reach routing by Stor-Inc	5.00-20.00 hrs, dt=0.05 hrs, 301 points) method, UH=Delmarva, Split Pervious I+Trans method - Pond routing by Stor	/Imperv. r-Ind method
Subcatchment XA1: XA-01	Runoff Area=2.540 ac 24.41% Imp Flow Length=323' Tc=76.3 min CN=60/9	pervious Runoff Depth>4.44" 98 Runoff=2.99 cfs 0.940 af
Pond ED: Existing Depression	Peak Elev=26.65' Storage=3,233	3 cf Inflow=2.99 cfs 0.940 af Outflow=2.90 cfs 0.904 af
Pond Q: DISCHARGE		Inflow=2.90 cfs 0.904 af Primary=2.90 cfs 0.904 af
Total Runoff Area = 2.5	40 ac Runoff Volume = 0.940 af Av 75.59% Pervious = 1.920 ac 24.	erage Runoff Depth = 4.44" 41% Impervious = 0.620 ac

Summary for Subcatchment XA1: XA-01

Runoff = 2.99 cfs @ 13.07 hrs, Volume= 0.940 af, Depth> 4.44"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100_Year Rainfall=8.73"

	Area	(ac) C	N Des	cription					
*	0.	620 9	98 Imp	ervious					
	1.	126 6	61 >7 ⁵	% Grass co	over, Good	, HSG B			
	0.	794 :	58 Woo	ods/grass o	omb., Goo	d, HSG B			
	2.	540 6	69 Wei	ghted Aver	age				
	1.920 60 75.59% Pervious Area								
	0.	620 9	98 24.4	1% Imperv	/ious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	52.8	222	0.0100	0.07		Sheet Flow, a-b			
						Woods: Light underbrush n= 0.400 P2= 3.30"			
	22.9	78	0.0100	0.06		Sheet Flow, b-c			
						Woods: Light underbrush n= 0.400 P2= 3.30"			
	0.6	23	0.0090	0.66		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			

76.3 323 Total

Subcatchment XA1: XA-01

Summary for Pond ED: Existing Depression

[82] Warning: Early inflow requires earlier time span

Inflow Area	=	2.540 ac, 2	4.41% Impervio	ous, Inflow Dep	oth > 4.44"	for 100_Year event
Inflow	=	2.99 cfs @	13.07 hrs, Vol	ume= (0.940 af	_
Outflow	=	2.90 cfs @	13.31 hrs, Vol	ume= (0.904 af, Atte	n= 3%, Lag= 14.2 min
Primary	=	2.90 cfs @	13.31 hrs, Vol	ume= (0.904 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 26.65' @ 13.31 hrs Surf.Area= 12,309 sf Storage= 3,233 cf

Plug-Flow detention time= 34.8 min calculated for 0.904 af (96% of inflow) Center-of-Mass det. time= 22.6 min (884.2 - 861.5)

Volume	Inv	ert Ava	il.Storage	 Storage Descript 	ion		
#1	26.	00'	66,915 ct	Custom Stage	Data (Irregular)Liste	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim (feet	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
26.0	00	422	151.	0 C	0	422	
27.0	00	25,750	777.	9,823	9,823	46,653	
28.0	00	42,800	1,000.	33,916	43,739	78,200	
28.5	50	50,000	1,200.	23,177	66,915	113,218	
Device	Routing	In	vert Ou	tlet Devices			
#1	Primary	26	5.42' 10 He 2.5 Co 3.3	.0' long x 1.0' brea ad (feet) 0.20 0.40 50 3.00 ef. (English) 2.69 50 3.31 3.32	dth Broad-Crester 0 0.60 0.80 1.00 2.72 2.75 2.85 2.9	1 Rectangular Weir 1.20 1.40 1.60 1.80 98 3.08 3.20 3.28 () 2.00 3.31

Primary OutFlow Max=2.90 cfs @ 13.31 hrs HW=26.65' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.90 cfs @ 1.28 fps)

Pond ED: Existing Depression

Summary for Pond Q: DISCHARGE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.540 ac, 24	1.41% Impe	ervious,	Inflow Depth	> 4.2	7" for 1	00_Year event
Inflow	=	2.90 cfs @	13.31 hrs,	Volume	= 0.90)4 af		
Primary	=	2.90 cfs @	13.31 hrs,	Volume	= 0.90	04 af,	Atten= 0%	6, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond Q: DISCHARGE

Appendix B

Post-Development Conditions

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.587	61	>75% Grass cover, Good, HSG B (PR-01, PR-02)
0.852	98	Paved parking, HSG B (PR-01, PR-02)
0.057	98	Unconnected roofs, HSG B (PR-03)
0.924	58	Woods/grass comb., Good, HSG B (PR-01, PR-03)
2.420	74	TOTAL AREA

_ProposedCMS Prepared by DeBlasio & HydroCAD® 10.00-26 s/n 11	Associates 007 © 2020 Hy	droCAD Softwa	Ty are Solutions I	rpe III 24-hr	02_Year Rainfa Printed 12	all=3.25" /28/2021 Page 3
Runoff k Reach routir	Time span=5.0 by SCS TR-20 ng by Stor-Ind+	00-20.00 hrs, o method, UH=I Trans methoo	dt=0.01 hrs, Delmarva, Sp I - Pond rou	1501 points blit Pervious/Ir iting by Stor-Ir	nperv. nd method	
SubcatchmentPR-01: PR	-01 F	Runoff Ar low Length=23	ea=1.110 ac 1' Tc=22.0 n	46.67% Imper nin CN=61/98	vious Runoff De Runoff=0.84 cfs	pth>1.52" 0.141 af
SubcatchmentPR-02: PR	-02 low Length=175'	Runoff Ar Slope=0.001	rea=0.390 ac 7 '/' Tc=5.0 n	85.64% Imper nin CN=61/98	vious Runoff De Runoff=0.91 cfs	pth>2.47" 0.080 af
Subcatchment PR-03: PR Flo	-03 w Length=222'	Runoff A Slope=0.0100	Area=0.920 ac '/' Tc=52.8 n	c 6.20% Imper nin CN=58/98	vious Runoff De Runoff=0.10 cfs	pth>0.44" 0.034 af
Pond 1P: Recharge	Discarded=0.4	Peak E 0 cfs 0.080 af	lev=25.63' Si Primary=0.00	torage=0.013 a) cfs_0.000 af	f Inflow=0.91 cfs Outflow=0.40 cfs	0.080 af 0.080 af
Pond B1: Basin 01	Discarded=0.6	Peak 0 cfs_0.175 af	Elev=24.61' Primary=0.00	Storage=933 c) cfs 0.000 af	f Inflow=0.89 cfs Outflow=0.60 cfs	0.175 af 0.175 af
Pond Q: DISCHARGE					Inflow=0.00 cfs Primary=0.00 cfs	0.000 af 0.000 af

Total Runoff Area = 2.420 acRunoff Volume = 0.255 afAverage Runoff Depth = 1.27"62.44% Pervious = 1.511 ac37.56% Impervious = 0.909 ac

Summary for Subcatchment PR-01: PR-01

Runoff = 0.84 cfs @ 12.36 hrs, Volume= 0.141 af, Depth> 1.52"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 02_Year Rainfall=3.25"

_	Area (ad	c) C	N Des	cription		
	0.51	8 9	8 Pav	ed parking	, HSG B	
	0.53	1 6	61 >75	% Ġrass c	over, Good	, HSG B
_	0.06	1 5	68 Woo	ods/grass o	comb., Goo	d, HSG B
	1.11	0 7	'8 Wei	ghted Aver	age	
	0.59	2 6	53.3	3% Pervio	us Area	
	0.51	8 9	8 46.6	7% Imperv	vious Area	
	Tc Lo (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.2	117	0.0060	0.89		Sheet Flow, A-B
_	19.8	114	0.0110	0.10		Smooth surfaces n= 0.011 P2= 3.30" Sheet Flow, B-C Grass: Dense n= 0.240 P2= 3.30"
	00 0	004	Tatal			

22.0 231 Total

Subcatchment PR-01: PR-01

Summary for Subcatchment PR-02: PR-02

Runoff = 0.91 cfs @ 12.09 hrs, Volume= 0.080 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 02_Year Rainfall=3.25"

Summary for Subcatchment PR-03: PR-03

Runoff = 0.10 cfs @ 12.91 hrs, Volume= 0.034 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 02_Year Rainfall=3.25"

	Area ((ac)	CN	Desc	ription				
	0.0	057	98	Unco	onnected re	oofs, HSG	В		
_	0.8	863	58	Woo	ds/grass c	omb., Good	d, HSG B		
	0.9	920	60	Weig	hted Aver	age			
	0.8	863	58	93.80	0% Pervio	us Area			
	0.0	057	98	6.20	% Impervio	ous Area			
	Tc (min)	Lengt (fee	h t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	52.8	22	2 0	.0100	0.07		Sheet Flow, A-B Woods: Light underbrush	n= 0.400	P2= 3.30"

Subcatchment PR-03: PR-03

Summary for Pond 1P: Recharge

[82] Warning: Early inflow requires earlier time span[92] Warning: Device #2 is above defined storage

Inflow Area	a =	0.390 ac, 8	5.64% Imp	ervious,	Inflow Depth >	2.47"	for 02_Y	'ear event
Inflow	=	0.91 cfs @	12.09 hrs,	Volume	= 0.080) af		
Outflow	=	0.40 cfs @	12.38 hrs,	Volume	= 0.080) af, At	ten= 57%,	Lag= 17.4 min
Discarded	=	0.40 cfs @	12.38 hrs,	Volume	= 0.080) af		
Primary	=	0.00 cfs @	5.00 hrs,	Volume	= 0.000) af		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 25.63' @ 12.38 hrs Surf.Area= 0.014 ac Storage= 0.013 af

Plug-Flow detention time= 8.4 min calculated for 0.080 af (100% of inflow) Center-of-Mass det. time= 8.3 min (751.2 - 742.8)

Volume	Invert	Avail.Storage	Storage Description
#1	24.00'	0.009 af	3.50'W x 180.00'L x 2.00'H Prismatoid
			0.029 af Overall - 0.006 af Embedded = 0.022 af x 40.0% Voids
#2	24.50'	0.006 af	12.0" Round CMP_Round 12" x 2 Inside #1
			L= 180.0'
		0.015 af	Total Available Storage
Device	Routing	Invert Ou	utlet Devices
#1	Discarded	24.00' 14	.000 in/hr Exfiltration over Wetted area
#2	Primary	27.00' 4.	0" Horiz. Orifice/Grate X 8.00 columns
		Х	8 rows C= 0.600 in 24.0" x 48.0" Grate (70% open area)
		Lir	nited to weir flow at low heads
Discard	ed OutFlow M filtration (Exf	Max=0.40 cfs @ iltration Controls	12.38 hrs HW=25.63' (Free Discharge) s 0.40 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge)

Printed 12/28/2021

Page 8

1 Flow (cfs) 0.40.cfs 0.40 cfs 0.00 cfs 0-4 6 ż 8 ģ 10 11 12 15 16 17 18 19 20 13 14 Time (hours)

Summary for Pond B1: Basin 01

[82] Warning: Early inflow requires earlier time span

Inflow Area	=	2.420 ac, 3	7.56% Imp	ervious,	Inflow Dep	oth >	0.87"	for 02	Year ever	nt
Inflow	=	0.89 cfs @	12.37 hrs,	Volume=	= (0.175	af			
Outflow	=	0.60 cfs @	12.90 hrs,	Volume	= (0.175	af, Atte	en= 33%,	Lag= 31	.5 min
Discarded	=	0.60 cfs @	12.90 hrs,	Volume=	= (0.175	af		-	
Primary	=	0.00 cfs @	5.00 hrs,	Volume=	= (0.000	af			

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 24.61' @ 12.90 hrs Surf.Area= 2,337 sf Storage= 933 cf

Plug-Flow detention time= 12.4 min calculated for 0.175 af (100% of inflow) Center-of-Mass det. time= 12.0 min (808.1 - 796.1)

Volume	Inve	ert Avai	l.Storage	Storage Descriptio	n		
#1	24.0	0'	30,976 cf	Custom Stage Da	i ta (Irregular) Listeo	d below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
24.0	00	830	560.0	0	0	830	
25.0)0	3,675	1,010.0	2,084	2,084	57,057	
26.0	00	6,732	1,030.0	5,127	7,211	60,460	
27.0	00	9,850	1,050.0	8,242	15,453	63,930	
28.0	00	22,000	1,200.0	15,524	30,976	90,811	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	26	.50' 10.0	long x 1.0' bread	th Broad-Crested	Rectangular Weir	
	,		Head	d (feet) 0.20 0.40	0.60 0.80 1.00 1.	20 1.40 1.60 1.80 2.00	
			2.50	3.00			
			Coef	. (English) 2.69 2.	72 2.75 2.85 2.98	3 3.08 3.20 3.28 3.31	
			3 30	3 31 3 32			
#2	Discarde	d 24	.00' 11.0	00 in/hr Exfiltration	n over Surface are	a	
Discard	ed OutFlo	w Max=0.	59 cfs @ 12	2.90 hrs HW=24.61	l' (Free Discharge)	

2=Exfiltration (Exfiltration Controls 0.59 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge)

Pond B1: Basin 01

Summary for Pond Q: DISCHARGE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.420 ac, 37	.56% Imperv	vious, Inflow De	epth = 0.00)" for 02_	Year event
Inflow	=	0.00 cfs @	5.00 hrs, Vo	olume=	0.000 af		
Primary	=	0.00 cfs @	5.00 hrs, Vo	olume=	0.000 af, /	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Pond Q: DISCHARGE

_ProposedCMS Prepared by DeBlasio HydroCAD® 10.00-26 s/n	& Associates 11007 © 2020 Hy	droCAD Softwa	Type are Solutions LL	e III 24-hr .C	10_Year Rainfo Printed 12	all=5.07" 2/28/2021 Page 12
Runo Reach rou	Time span=5. ff by SCS TR-20 iting by Stor-Ind+	00-20.00 hrs, o method, UH=I •Trans methoo	dt=0.01 hrs, 15 Delmarva, Spli I - Pond routi	501 points t Pervious/Ir ng by Stor-Ir	nperv. nd method	
Subcatchment PR-01: F	PR-01	Runoff Ar low Length=23	ea=1.110 ac 4 1' Tc=22.0 mir	l6.67% Imper n CN=61/98	rvious Runoff De Runoff=1.57 cfs	pth>2.76" 6 0.255 af
Subcatchment PR-02: F	PR-02 Flow Length=175	Runoff Ar Slope=0.001	ea=0.390 ac 8 7 '/' Tc=5.0 mir	85.64% Imper n CN=61/98	vious Runoff De Runoff=1.49 cfs	epth>4.02" s_0.131 af
Subcatchment PR-03: F	PR-03 Flow Length=222'	Runoff A Slope=0.0100	\rea=0.920 ac '/' Tc=52.8 mir	6.20% Imper n CN=58/98	vious Runoff De Runoff=0.35 cfs	epth>1.25" s_0.096 af
Pond 1P: Recharge	Discarded=0.4	Peak E 4 cfs 0.116 af	lev=27.09' Stor Primary=1.05 d	rage=0.015 a cfs_0.014 af	f Inflow=1.49 cfs Outflow=1.49 cfs	s 0.131 af s 0.131 af
Pond B1: Basin 01	Discarded=1.0	Peak E 9 cfs 0.365 af	lev=25.22' Sto Primary=0.00 d	rage=2,950 c cfs_0.000 af	f Inflow=2.12 cfs Outflow=1.09 cfs	s 0.365 af s 0.365 af
Pond Q: DISCHARGE					Inflow=0.00 cfs Primary=0.00 cfs	s 0.000 af s 0.000 af

Total Runoff Area = 2.420 acRunoff Volume = 0.481 afAverage Runoff Depth = 2.39"62.44% Pervious = 1.511 ac37.56% Impervious = 0.909 ac

Summary for Subcatchment PR-01: PR-01

Runoff = 1.57 cfs @ 12.36 hrs, Volume= 0.255 af, Depth> 2.76"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10_Year Rainfall=5.07"

_	Area (a	ic) C	N Des	cription		
	0.5	18 9	8 Pav	ed parking	, HSG B	
	0.53	31 6	61 >75	% Ġrass c	over, Good	, HSG B
_	0.06	61 5	58 Woo	ods/grass o	comb., Goo	d, HSG B
	1.1	10 7	78 Wei	ghted Aver	age	
	0.59	92 6	61 53.3	3% Pervio	us Area	
	0.5	18 9	98 46.6	7% Imperv	vious Area	
	Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.2	117	0.0060	0.89		Sheet Flow, A-B
_	19.8	114	0.0110	0.10		Smooth surfaces n= 0.011 P2= 3.30" Sheet Flow, B-C Grass: Dense n= 0.240 P2= 3.30"
	~~~~	004	<b>T</b> ( )			

22.0 231 Total

# Subcatchment PR-01: PR-01



### Summary for Subcatchment PR-02: PR-02

Runoff = 1.49 cfs @ 12.09 hrs, Volume= 0.131 af, Depth> 4.02"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10_Year Rainfall=5.07"



### Summary for Subcatchment PR-03: PR-03

Runoff = 0.35 cfs @ 12.90 hrs, Volume= 0.096 af, Depth> 1.25"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10_Year Rainfall=5.07"

_	Area (a	ac)	CN	Desc	ription					_
	0.0	)57	98	Unco	onnected re	oofs, HSG	В			
_	0.8	363	58	Woo	ds/grass c	omb., Goo	d, HSG B			_
	0.9	920	60	Weig	hted Aver	age				
	0.8	363	58	93.80	0% Pervio	us Area				
	0.0	)57	98	6.20	% Impervio	ous Area				
	Tc (min)	Lengtł (feet	ו : )	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	52.8	222	2 0	.0100	0.07		Sheet Flow, A-B Woods: Light underbrush	n= 0.400	P2= 3.30"	-

# Subcatchment PR-03: PR-03



### **Summary for Pond 1P: Recharge**

[82] Warning: Early inflow requires earlier time span

[92] Warning: Device #2 is above defined storage

[93] Warning: Storage range exceeded by 1.09'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=17)

Inflow Area	=	0.390 ac, 8	5.64% Imp	ervious,	Inflow	Depth >	4.0	2" for	10_`	Year event	t
Inflow	=	1.49 cfs @	12.09 hrs,	Volume	=	0.131	af				
Outflow	=	1.49 cfs @	12.11 hrs,	Volume	=	0.131	af,	Atten= 0	%, I	Lag= 1.1 n	nin
Discarded	=	0.44 cfs @	12.10 hrs,	Volume	=	0.116	af				
Primary	=	1.05 cfs @	12.11 hrs,	Volume	=	0.014	af				

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 27.09' @ 12.11 hrs Surf.Area= 0.014 ac Storage= 0.015 af

Plug-Flow detention time= 8.4 min calculated for 0.131 af (100% of inflow) Center-of-Mass det. time= 8.3 min (749.1 - 740.8)

Volume	Invert	Avail.Storage	Storage Description
#1	24.00'	0.009 af	3.50'W x 180.00'L x 2.00'H Prismatoid
#2	24.50'	0.006 af	<b>12.0"</b> Round CMP_Round <b>12"</b> x 2 Inside #1 L= 180.0'
		0.015 af	Total Available Storage
Device	Routing	Invert Ou	Itlet Devices
#1 #2	Discarded Primary	24.00' <b>14</b> 27.00' <b>4.0</b> X 8 Lir	.000 in/hr Exfiltration over Wetted area D" Horiz. Orifice/Grate X 8.00 columns B rows C= 0.600 in 24.0" x 48.0" Grate (70% open area) nited to weir flow at low heads

**Discarded OutFlow** Max=0.44 cfs @ 12.10 hrs HW=27.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.44 cfs)

Primary OutFlow Max=1.04 cfs @ 12.11 hrs HW=27.09' (Free Discharge) ←2=Orifice/Grate (Weir Controls 1.04 cfs @ 0.98 fps)



Pond 1P: Recharge

### Summary for Pond B1: Basin 01

[82] Warning: Early inflow requires earlier time span

Inflow Area	ı =	2.420 ac, 3	7.56% Imp	ervious, Int	flow Depth >	1.81"	for 10_\	/ear event
Inflow	=	2.12 cfs @	12.27 hrs,	Volume=	0.365	af		
Outflow	=	1.09 cfs @	13.06 hrs,	Volume=	0.365	af, Atte	en= 49%,	Lag= 47.5 min
Discarded	=	1.09 cfs @	13.06 hrs,	Volume=	0.365	af		
Primary	=	0.00 cfs @	5.00 hrs,	Volume=	0.000	af		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 25.22' @ 13.06 hrs Surf.Area= 4,264 sf Storage= 2,950 cf

Plug-Flow detention time= 25.8 min calculated for 0.365 af (100% of inflow) Center-of-Mass det. time= 25.3 min (826.4 - 801.1)

Volume	Inve	ert Avai	l.Storage	Storage Descriptio	n		
#1	24.0	0'	30,976 cf	Custom Stage Da	i <b>ta (Irregular)</b> Listeo	d below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
24.0 25.0 26.0	00 00 00	830 3,675 6,732	560.0 1,010.0 1,030.0	0 2,084 5,127	0 2,084 7,211	830 57,057 60,460	
27.0 28.0	00 00	9,850 22,000	1,050.0 1,200.0	8,242 15,524	15,453 30,976	63,930 90,811	
Device	Routing	<u>In</u>	vert Outle	et Devices			
#1 Primary 26.50' <b>10.0' long x 1.0' breadth Broad-Crested Rectangular Weir</b> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.0 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32						)	
#2	Discarde	d 24	.00' <b>11.0</b>	00 in/hr Exfiltratio	n over Surface are	a	
Discard	ed OutFlo	<b>w</b> Max=1.0	09 cfs @ 13	3.06 hrs HW=25.22	2' (Free Discharge	e)	

**Discarded OutFlow** Max=1.09 cfs @ 13.06 nrs **—2=Exfiltration** (Exfiltration Controls 1.09 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
Outflow
Discarded 2.12 cfs Inflow Area=2.420 ac Primary Peak Elev=25.22' 2 Storage=2,950 cf <u>1.09 cfs</u> 1.09 cfs Flow (cfs) 0.00 cfs 0-4 6 ź 8 ģ 12 10 11 14 15 16 17 18 19 20 13 Time (hours)

# Pond B1: Basin 01

## **Summary for Pond Q: DISCHARGE**

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.420 ac, 37	.56% Impervious,	Inflow Depth = $0$	.00" for 10_	Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	e= 0.000 af	_	-
Primary	=	0.00 cfs @	5.00 hrs, Volume	e= 0.000 af	, Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs



# Pond Q: DISCHARGE

_ProposedCMS Prepared by DeBlasio & HydroCAD® 10.00-26 s/n 1	& Associates	vdroCAD Softwa	Type	e III 24-hr 10 LC	00_Year Rainfa Printed 12	a <b>l/=8</b> .73" /28/2021 <u>Page 21</u>
Runoff Reach rout	Time span=5.0 by SCS TR-20 ing by Stor-Ind+	00-20.00 hrs, method, UH= Trans method	dt=0.01 hrs, 1 Delmarva, Spl 1 - Pond rout	501 points lit Pervious/Ir ing by Stor-Ir	nperv. nd method	
Subcatchment PR-01: P	R-01	Runoff A Flow Length=23	rea=1.110 ac 31' Tc=22.0 m	46.67% Imper in CN=61/98	vious Runoff De Runoff=3.28 cfs	pth>5.59" 0.517 af
Subcatchment PR-02: P	<b>R-02</b> Flow Length=175	Runoff A Slope=0.001	rea=0.390 ac 7 '/'   Tc=5.0 m	85.64% Imper in CN=61/98	vious Runoff De Runoff=2.67 cfs	pth>7.21" 0.234 af
Subcatchment PR-03: P	<b>R-03</b> low Length=222'	Runoff / Slope=0.0100	\rea=0.920 ac '/' Tc=52.8 m	6.20% Imper in CN=58/98	vious Runoff De Runoff=1.10 cfs	pth>3.52" 0.270 af
Pond 1P: Recharge	Discarded=0.4	Peak E 4 cfs  0.175 af	lev=27.15' Sto Primary=2.37	orage=0.015 a cfs  0.060 af	f Inflow=2.67 cfs Outflow=2.82 cfs	0.234 af 0.234 af
Pond B1: Basin 01	Discarded=2.0	Peak El 2 cfs  0.846 af	ev=26.41' Stor Primary=0.00	rage=10,180 c cfs_0.000 af	f Inflow=4.96 cfs Outflow=2.02 cfs	0.847 af 0.846 af
Pond Q: DISCHARGE					Inflow=0.00 cfs Primary=0.00 cfs	0.000 af 0.000 af

Total Runoff Area = 2.420 acRunoff Volume = 1.022 afAverage Runoff Depth = 5.07"62.44% Pervious = 1.511 ac37.56% Impervious = 0.909 ac

### Summary for Subcatchment PR-01: PR-01

Runoff = 3.28 cfs @ 12.33 hrs, Volume= 0.517 af, Depth> 5.59"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 100_Year Rainfall=8.73"

Area (	ac) (	CN	Desc	ription		
0.5	518	98	Pave	d parking	HSG B	
0.5	531	61	>75%	6 Grass co	over, Good	, HSG B
0.0	)61	58	Woo	ds/grass c	omb., Goo	d, HSG B
1.1	110	78	Weig	hted Aver	age	
0.5	592	61	53.33	3% Pervio	us Area	
0.5	518	98	46.67	7% Imperv	vious Area	
Тс	Length	S	Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
2.2	117	0.0	0060	0.89		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 3.30"
19.8	114	0.0	0110	0.10		Sheet Flow, B-C
						Grass: Dense n= 0.240 P2= 3.30"
22.0	231	Тс	otal			

### Subcatchment PR-01: PR-01



### Summary for Subcatchment PR-02: PR-02

Runoff = 2.67 cfs @ 12.09 hrs, Volume= 0.234 af, Depth> 7.21"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 100_Year Rainfall=8.73"



### Summary for Subcatchment PR-03: PR-03

Runoff = 1.10 cfs @ 12.79 hrs, Volume= 0.270 af, Depth> 3.52"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 100_Year Rainfall=8.73"

 Area (	ac)	CN	Desc	ription				
0.0	)57	98	Unco	onnected re	oofs, HSG	В		
 0.0	363	58	Wood	ds/grass c	omb., Good	d, HSG B		
0.9	920	60	Weig	hted Aver	age			
0.0	363	58	93.80	0% Pervio	us Area			
0.0	)57	98	6.209	% Impervio	ous Area			
Tc (min)	Lengt (feet	h ( :)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
 52.8	22	2 0	.0100	0.07		Sheet Flow, A-B Woods: Light underbrush	n= 0.400	P2= 3.30"

# Subcatchment PR-03: PR-03



### **Summary for Pond 1P: Recharge**

[82] Warning: Early inflow requires earlier time span

[92] Warning: Device #2 is above defined storage

[93] Warning: Storage range exceeded by 1.15'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=33)

Inflow Area	=	0.390 ac, 8	5.64% Imp	ervious, In	flow Depth	> 7.2	1" for 10	0_Year event
Inflow	=	2.67 cfs @	12.09 hrs,	Volume=	0.2	34 af		
Outflow	=	2.82 cfs @	12.09 hrs,	Volume=	0.2	34 af,	Atten= 0%,	Lag= 0.0 min
Discarded	=	0.44 cfs @	11.94 hrs,	Volume=	0.1	75 af		
Primary	=	2.37 cfs @	12.09 hrs,	Volume=	0.0	60 af		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 27.15' @ 12.09 hrs Surf.Area= 0.014 ac Storage= 0.015 af

Plug-Flow detention time= 7.5 min calculated for 0.234 af (100% of inflow) Center-of-Mass det. time= 7.4 min (746.9 - 739.5)

Volume	Invert	Avail.Storage	Storage Description
#1	24.00'	0.009 af	3.50'W x 180.00'L x 2.00'H Prismatoid
#2	24.50'	0.006 af	0.029 af Overall - 0.006 af Embedded = 0.022 af x 40.0% Voids <b>12.0" Round CMP_Round 12"</b> x 2 Inside #1 L= 180.0'
		0.015 af	Total Available Storage
Device	Routing	Invert O	utlet Devices
#1	Discarded	24.00' <b>1</b> 4	4.000 in/hr Exfiltration over Wetted area
#2	Primary	27.00' <b>4</b> .	0" Horiz. Orifice/Grate X 8.00 columns
		Х	8 rows C= 0.600 in 24.0" x 48.0" Grate (70% open area)
		Li	mited to weir flow at low heads

**Discarded OutFlow** Max=0.44 cfs @ 11.94 hrs HW=27.07' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.44 cfs)

Primary OutFlow Max=2.37 cfs @ 12.09 hrs HW=27.15' (Free Discharge) ←2=Orifice/Grate (Weir Controls 2.37 cfs @ 1.28 fps) Flow (cfs)

0-

5

6

Ż

ģ

10

11

12

13 Time (hours)

8



14

15

16

17

18

19

20

Pond 1P: Recharge

Printed 12/28/2021

Page 26

### Summary for Pond B1: Basin 01

[82] Warning: Early inflow requires earlier time span

Inflow Area	ı =	2.420 ac, 3	7.56% Imp	ervious, Inflov	v Depth > 4	.20" for 100_	Year event
Inflow	=	4.96 cfs @	12.27 hrs,	Volume=	0.847 af	-	
Outflow	=	2.02 cfs @	13.32 hrs,	Volume=	0.846 af	, Atten= 59%,	Lag= 63.1 min
Discarded	=	2.02 cfs @	13.32 hrs,	Volume=	0.846 af	:	
Primary	=	0.00 cfs @	5.00 hrs,	Volume=	0.000 af	:	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 26.41' @ 13.32 hrs Surf.Area= 7,925 sf Storage= 10,180 cf

Plug-Flow detention time= 55.1 min calculated for 0.846 af (100% of inflow) Center-of-Mass det. time= 54.5 min (855.2 - 800.7)

Volume	Inve	ert Avai	l.Storage	Storage Descriptio	n				
#1	24.0	0'	30,976 cf	Custom Stage Da	i <b>ta (Irregular)</b> Listeo	below (Recalc)			
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
24.0	00	830	560.0	0	0	830			
25.0	00	3,675	1,010.0	2,084	2,084	57,057			
26.0	00	6,732	1,030.0	5,127	7,211	60,460			
27.0	00	9,850	1,050.0	8,242	15,453	63,930			
28.0	00	22,000	1,200.0	15,524	30,976	90,811			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	26	.50' <b>10.0</b>	long x 1.0' bread	th Broad-Crested	Rectangular Weir			
	,		Head	d (feet) 0.20 0.40	0.60 0.80 1.00 1.	20 1.40 1.60 1.80 2.0	0		
			2.50	3.00					
			Coet	. (English) 2.69 2.1	72 2.75 2.85 2.98	3 3.08 3.20 3.28 3.31			
			3.30	3.31 3.32					
#2	Discarde	d 24	.00' 11.0	00 in/hr Exfiltration	n over Surface are	a			
Discard	Discarded OutFlow Max=2.02 cfs @ 13.32 hrs HW=26.41' (Free Discharge)								

**2=Exfiltration** (Exfiltration Controls 2.02 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge)



Pond B1: Basin 01

## **Summary for Pond Q: DISCHARGE**

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.420 ac, 37	.56% Impervious,	Inflow Depth =	0.00" for 1	00_Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	e= 0.000	af	
Primary	=	0.00 cfs @	5.00 hrs, Volume	e= 0.000	af, Atten= 0%	%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs



# Pond Q: DISCHARGE

# Appendix C

# NJDEP Water Quality Storm

_ProposedCMS		NJ DEP 2-hr N	JDEP WQ Rainfall=1.25"
Prepared by DeBlasio &	Associates		Printed 12/28/2021
HydroCAD® 10.00-26 s/n 11	007 © 2020 HydroCAD Softwa	are Solutions LLC	Page 30
Runoff b Reach routir	Time span=5.00-20.00 hrs, o by SCS TR-20 method, UH=I ng by Stor-Ind+Trans method	dt=0.01 hrs, 1501 points Delmarva, Split Pervious I - Pond routing by Sto	s/Imperv. r-Ind method
SubcatchmentPR-01: PR	-01 Runoff Ar Flow Length=23	ea=1.110 ac 46.67%	pervious Runoff Depth=0.00" 98 Runoff=0.00 cfs 0.000 af
SubcatchmentPR-02: PR F	-02 Runoff Ar low Length=175' Slope=0.001	ea=0.390 ac 85.64% Imp 7 '/' Tc=5.0 min CN=61/	pervious Runoff Depth=0.00" 98 Runoff=0.00 cfs 0.000 af
Subcatchment PR-03: PR	-03 Runoff A w Length=222' Slope=0.0100	vrea=0.920 ac   6.20% Imp '/'   Tc=52.8 min   CN=58/	pervious Runoff Depth>0.00" 98 Runoff=0.00 cfs 0.000 af
Pond 1P: Recharge	Peak E Discarded=0.00 cfs 0.000 af	lev=24.00' Storage=0.000 Primary=0.00 cfs 0.000 a	0 af Inflow=0.00 cfs 0.000 af af Outflow=0.00 cfs 0.000 af
Pond B1: Basin 01	Pe Discarded=0.00 cfs 0.000 af	ak Elev=24.00' Storage= Primary=0.00 cfs 0.000 a	0 cf Inflow=0.00 cfs 0.000 af af Outflow=0.00 cfs 0.000 af
Pond Q: DISCHARGE			Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

# Total Runoff Area = 2.420 acRunoff Volume = 0.000 afAverage Runoff Depth = 0.00"62.44% Pervious = 1.511 ac37.56% Impervious = 0.909 ac

### Summary for Subcatchment PR-01: PR-01

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

Area (a	ac) C	N Des	scription		
0.5	18 9	98 Pav	ed parking	, HSG B	
0.5	31 6	61 >75	% Grass c	over, Good	, HSG B
0.0	61 5	58 Wo	ods/grass o	comb., Goo	d, HSG B
1.1	10 7	78 We	ighted Avei	rage	
0.5	92 6	61 53.3	33% Pervio	us Area	
0.5	18 9	98 46.0	67% Imperv	vious Area	
Tc I	Length	Slope	Velocity	Capacity	Description
(((((((((((((((((((((((((((((((((((((((		(11/11)	(It/sec)	(CIS)	
2.2	117	0.0060	0.89		Sheet Flow, A-B
19.8	114	0.0110	0.10		Smooth surfaces n= 0.011 P2= 3.30" <b>Sheet Flow, B-C</b> Grass: Dense n= 0.240 P2= 3.30"

22.0 231 Total

### Subcatchment PR-01: PR-01



### Summary for Subcatchment PR-02: PR-02

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

 Area (ac)	CN	l Desc	cription					
0.334	98	B Pave	ed parking,	HSG B				
0.056	61	>75%	6 Grass co	over, Good,	HSG B			
0.390	93	Weig	hted Aver	age				
0.056	61	14.3	6% Pervio	us Area				
0.334	98	8 85.64	4% Imperv	vious Area				
Tc Ler (min) (f	ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0	175	0.0017	0.58		Sheet Flow, A-B Smooth surfaces	n= 0.011	P2= 3.30"	

### Subcatchment PR-02: PR-02



### Summary for Subcatchment PR-03: PR-03

[73] Warning: Peak may fall outside time span

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth> 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 5.00-20.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

Area	(ac)	CN	Desc	cription				
0	.057	98	Unco	onnected r	oofs, HSG	В		
0	.863	58	Woo	ds/grass c	omb., Goo	d, HSG B		
0	.920	60	Weig	ghted Aver	age			
0	.863	58	93.8	0% Pervio	us Area			
0	.057	98	6.20	% Impervi	ous Area			
Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
52.8	22	22 (	0.0100	0.07		Sheet Flow, A-B Woods: Light underbrush	n= 0.400	P2= 3.30"

### Subcatchment PR-03: PR-03



### Summary for Pond 1P: Recharge

[92] Warning: Device #2 is above defined storage

Inflow Area	a =	0.390 ac, 85	6.64% Impervious,	Inflow Depth =	0.00" foi	⁻ NJDEP WQ event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af, Atten=	0%, Lag= 0.0 min
Discarded	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af	-
Primary	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 24.00' @ 5.00 hrs Surf.Area= 0.014 ac Storage= 0.000 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Storage	Storage Description
#1	24.00'	0.009 af	3.50'W x 180.00'L x 2.00'H Prismatoid
#2	24.50'	0.006 af	<b>12.0"</b> Round CMP_Round <b>12"</b> x 2 Inside #1 L= 180.0'
		0.015 af	Total Available Storage
Device	Routing	Invert O	utlet Devices
#1	Discarded	24.00' <b>1</b> 4	1.000 in/hr Exfiltration over Wetted area
#2	Primary	27.00' <b>4.</b>	0" Horiz. Orifice/Grate X 8.00 columns
	-	Х	8 rows C= 0.600 in 24.0" x 48.0" Grate (70% open area)
		Li	mited to weir flow at low heads
Discoud			

**Discarded OutFlow** Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge) **1=Exfiltration** (Passes 0.00 cfs of 0.20 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)



# Pond 1P: Recharge

## Summary for Pond B1: Basin 01

[82] Warning: Early inflow requires earlier time span

Inflow Area	ı =	2.420 ac, 37	.56% Impervious,	Inflow Depth >	0.00" fo	NJDEP WQ event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	5.12 hrs, Volume	= 0.000	af, Atten=	15%, Lag= 7.4 min
Discarded	=	0.00 cfs @	5.12 hrs, Volume	= 0.000	af	-
Primary	=	0.00 cfs @	5.00 hrs, Volume	= 0.000	af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 24.00' @ 5.12 hrs Surf.Area= 830 sf Storage= 0 cf

Plug-Flow detention time= 3.4 min calculated for 0.000 af (99% of inflow) Center-of-Mass det. time= 2.5 min ( 339.9 - 337.4 )

Volume	Inve	ert Avai	I.Storage	Storage Description	า		
#1	24.0	0' 3	30,976 cf	Custom Stage Dat	<b>ta (Irregular)</b> Listed	below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
24.0 25.0 26.0 27.0 28.0	00 00 00 00 00	830 3,675 6,732 9,850 22,000	560.0 1,010.0 1,030.0 1,050.0 1,200.0	0 2,084 5,127 8,242 15,524	0 2,084 7,211 15,453 30,976	830 57,057 60,460 63,930 90,811	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	26. d 24.	.50' <b>10.0'</b> Head 2.50 Coef 3.30 .00' <b>11.0</b>	<b>10.0' long x 1.0' breadth Broad-Crested Rectangular Weir</b> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32 <b>11.000 in/hr Exfiltration over Surface area</b>			
Discard	<b>Discarded OutFlow</b> Max=0.21 cfs @ 5.12 brs. $HW=24.00'$ (Free Discharge)						

**Discarded OutFlow** Max=0.21 cfs @ 5.12 hrs HW=24.00' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=24.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

# Pond B1: Basin 01



## Summary for Pond Q: DISCHARGE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.420 ac, 37	.56% Impervious,	Inflow Depth =	0.00" fo	r NJDEP WQ event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 a	af	
Primary	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 a	af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs



# Pond Q: DISCHARGE

# Appendix D

Soil Boring Logs



### SOIL BORING LOG #1 (CLOSEST TO NORTHFIELD AVENUE)

# BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY Excavated by Junetta N. Dix with 4" hand auger on September 28, 2021

DEPTH (INCHES)	SOIL DESCRIPTION
0 – 14"	10YR 4/2 Dark grayish brown medium loam; 0% coarse material content; angular blocky; friable; few roots.
14 – 26"	10YR 5/4 Yellowish brown medium loam; 0% coarse material content; angular blocky; friable.
26 – 58"	10YR 6/4 Light yellowish brown medium sandy loam; 0% coarse material content; angular blocky; friable. <i>Permeability rate = 11.907 in/hr. (K4)</i>
58 – 64"	10YR 8/4 Very pale brown coarse sand; 2% gravel content; single grained; loose; with common, distinct 10 YR 5/6 yellowish brown mottles at 58"; damp but no obvious seepage.

Soil Sample Depth:	36"				
Depth to estimated SH	WT: <u>58"</u>				
Restrictive Horizon: None Encountered					
Depth to groundwater:	Not Encountered				

This document is an instrument of professional service, is the property of ACT Engineers, Inc. (ACT) and shall not be used in whole or in part for any other project without the written consent of ACT. This soil boring/pit log has been completed to assess the probable soil conditions, which may be found in the immediate vicinity of the specific boring location. ACT does not guarantee that all soils on this specific site will be similar in texture, structure, or other physical properties. Seasonal high water table determinations and hydrologically restrictive horizons are estimated only and can vary across a site. Some borings/pits may be subject to regulatory agency review. ACT does not guarantee that unwitnessed borings/pits will be acceptable to the applicable regulatory agency. However, all borings and test pits will be completed in a professional manner utilizing currently acceptable standards.



# SOIL BORING LOG #2 (CLOSEST TO REAR PROPERTY LINE)

BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY Excavated by Junetta N. Dix with 4" hand auger on September 28, 2021

DEPTH (INCHES)	SOIL DESCRIPTION
0 – 4"	10YR 4/2 Dark grayish brown medium loam; 0% coarse material content; angular blocky; friable; few roots.
4 – 30"	10YR 6/6 Brownish yellow medium loamy sand; 0% coarse material content; angular blocky; friable.
30 – 36"	10YR 6/6 Brownish yellow medium to coarse sand; 2% gravel content; angular blocky; friable.
36 – 42"	10YR 5/6 Yellowish brown medium loamy sand; 2% gravel content; angular blocky; friable; <i>Permeability rate = 14.032 in/hr. (K4).</i>
42 – 48"	10YR 8/4 Very pale brown medium sand; 0% coarse material content; angular blocky; friable; with common, distinct 10 YR 5/6 yellowish brown mottles at 42".
48 – 64"	10YR 8/3 Very pale brown fine sand; 0% coarse material content; angular blocky; friable; with common, distinct 10 YR 5/6 yellowish brown mottles throughout horizon; damp, but no obvious seepage.

Soil Sample Depth:	40"					
Depth to estimated SHWT:						
Restrictive Horizon: None Encountered						
Depth to groundwater:	Not Encountered					

This document is an instrument of professional service, is the property of ACT Engineers, Inc. (ACT) and shall not be used in whole or in part for any other project without the written consent of ACT. This soil boring/pit log has been completed to assess the probable soil conditions, which may be found in the immediate vicinity of the specific boring location. ACT does not guarantee that all soils on this specific site will be similar in texture, structure, or other physical properties. Seasonal high water table determinations and hydrologically restrictive horizons are estimated only and can vary across a site. Some borings/pits may be subject to regulatory agency review. ACT does not guarantee that unwitnessed borings/pits will be acceptable to the applicable regulatory agency. However, all borings and test pits will be completed in a professional manner utilizing currently acceptable standards.

# TUBE PERMEAMETER TEST #1 (From Soil Boring #1) BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY

1 2 3	Test No. Material To	ested	1 F	Replicate ( Till Indisturbe	(letter) Native S	A Soil Te	Date Collected st- depth Disturbed	9/28/21 36"	
4	Sample dimensions: Inside radius of sample tube R (cm)								
т	Length of sample 1 (inches)								
5	Bulk density determination (disturbed samples only):								
0	Sample we	eight (grams)		a campic	e e,),:		700		
	Sample vo	olume (L x 2.5	4 cm/in. x (3	3.14r2)			578.866		
	Bulk densi	ty (Sample we	eight/Sampl	e volume)			1.209260865		
6	Standpipe	Úsed:	0 1	,	Yes		Х	No	
	Indicate Internal Radius								
7	Height of water above rim of test basin, inche Refer to following table								
	At the beginning of each test interval,H1 Refer to following table								
	At the end of each test interval H2 Refer to following table								
			Rate	of wate	r level o	drop			
			Time,	Start	Time,	End	Length of Test		
	H1	H2	of T	est	of Te	est	Interval, T,		
	(in)	(in)	Interval,	T1 (min) I	nterval, 7	Г2 (mi	minutes		
Fest 1	5.50	5.00	0.00		2.05		2.05		
Fest 2	5.50	4.75	0.00		3.40		3.40		
Fest 3	5.50	4.50	0.00		5.00		5.00		
Fest 4	5.50	4.50	0.00		4.95		4.95		
Fest 5	5.50	4.50	0.00		5.05		5.05		

# 8 Calculation of Permeability:

K, (in/hr)=	(	60 min/hr*L(in)/]	Γ(min)*Ln (H1	/H2)
K1 (in/hr)=		13.948	K4	Soil Permeability Class
K2 (in/hr)=		12.936	K4	Soil Permeability Class
K3 (in/hr)=		12.040	K4	Soil Permeability Class
K4 (in/hr)=		12.162	K4	Soil Permeability Class
K4 (in/hr)=		11.921	K4	Soil Permeability Class
	AVERAGE	12.601	K4	

9 I hereby certify that the information furnished on this form is true and accurate.

Signature of Soil Evaluator

Sumetta Di

Date 9/28/21

Signature of Professional Engineer

Lic. #
## TUBE PERMEAMETER TEST #1 (From Soil Boring #1) BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY

1	Test No.		1	Replicate	(letter)	В	Date Collec	ted	9/28/21
2	Material Te	ested		Fill	Native	Soil Te	st- depth		36"
3	Type of sar	mple:		Undisturbe	ed	XX	Disturbed		
4	Sample din	nensions: Insi	ide radius	of sample	tube, R	(cm)			
	Length of s	sample, L (inc	hes)						4.00
5	Bulk densit	y determination	on (distur	bed sample	s only):				
	Sample we	eight (grams)						598	
	Sample vol	lume (L x 2.54	4 cm/in. x	(3.14r2)			463.	0928	
	Bulk densit	y (Sample we	eight/Sam	ple volume)			1.29131	7852	
6	Standpipe	Used:			Yes			X	No
	Indicate Int	ternal Radius			-				
7	Height of w	ater above rir	n of test l	basin, inche	Refer to	o follov	ving table		
	At the begi	nning of each	test inter	val,H1	Refer to	o follov	ving table		
	At the end	of each test in	nterval H2	2	Refer to	o follov	ving table		
			Rat	e of wate	r level	drop	-		
			Time	e, Start	Time,	End	Length of	Test	
	H1	H2	of	Test	of T	est	Interval,	Τ,	
	(in)	(in)	Interva	l, T1 (min) l	nterval,	T2 (mi	minute	S	
Test 1	4.50	3.50	0.00		5.00		5.00		
Test 2	4.50	3.50	0.00		5.20		5.20		
Test 3	4.50	3.50	0.00		4.98		4.98		
Test 4	4.50	3.50	0.00		5.00		5.00		
Test 5	4.50	3.50	0.00		5.02		5.02		
•	<b>.</b>	( <b>F</b>	••••						
8	Calculatio	n of Permeat	ollity:						
	K, (in/hr)=		60 min/hr	"*L(in)/ I (mir	1)*Ln (H	1/H2)		~	
	K1 (in/hr)=		12.063		K4	Soil F	ermeability	Class	
	K2 (in/hr)=		11.599		K4	Soil F	Permeability	Class	
	K3 (in/hr)=		12.112		K4	Soil F	Permeability	Class	
	K4 (in/hr)=		12.063		K4	Soil F	Permeability	Class	
	K4 (in/hr)=		12.015		K4	Soil F	Permeability	Class	
-		AVERAGE	11.970		K4	_			
9	I hereby cer	tify that the info	ormation fu	urnished on t	his form	is true a	and accurate.		
Signatu	re of Soil E	valuator		Sunettal	2.			Date_	9/28/21

Signature of Professional Engineer

Lic. # _____

### TUBE PERMEAMETER TEST #2 (From Soil Boring #2) BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY

1 2	Test No. Material Te	ested	2	Replicate ( Fill	letter) Native S	<b>A</b> Soil Te	Date Collected	<u>9/28/21</u> 40"
3	Type of sa	mple:		Undisturbe	d	ХХ	Disturbed	
4	Sample dir	nensions: Ins	ide radius	of sample t	∽ tube R(	$\frac{1}{(cm)}$		
•	Length of s	sample I (inc	hes)	or campio (		(onn)		4 00
5	Bulk densit	tv determinati	on (disturb	ed sample	s only):			
Ũ	Sample we	eight (grams)			o oniy).		570	
	Sample vo	lume (L x 2 54	4 cm/in x	(3 14r2)			463 0928	
	Bulk densi	ty (Sample we	eight/Samr	ole volume)			1 230854809	
6	Standpipe	Used:	ngin Camp		Yes		X	No
Ũ	Indicate Int	ternal Radius						
7	Height of w	ater above ri	m of test b	asin inche	Refer to	o follov	ving table	
•	At the begi	nning of each	test interv	val H1	Refer to	o follov	ving table	
	At the end	of each test in	nterval H2	val,i i i	Refer to	o follov	ving table	
			Rate	e of water	level of	dron	ang table	
			Time	Start	Time	End	Length of Test	
	H1	H2	of	, etan Test	of Te	est	Interval T	
	(in)	(in)	Interval	T1 (min) li	nterval	T2 (mi	minutes	
Test 1	5 50	5.00	0.00	, () .	1 60	1 <u>2</u> (	1 60	
Test 2	5.50	4.50	0.00		3.40		3.40	
Test 3	5.50	4.50	0.00		3.33		3.33	
Test 4	5.50	4.50	0.00		3.45		3.45	
Test 5	5.50	4.50	0.00		3.47		3.47	
					_		_	
8	Calculatio	n of Permeal	oility:					
	K, (in/hr)=		60 min/hr*	[•] L(in)/T(min	)*Ln (H1	/H2)		
	K1 (in/hr)=		14.297		K4	Soil F	Permeability Class	5
	K2 $(in/hr)$ =		14.165		K4	Soil F	Permeability Class	5
	K3 (in/hr)=		14.463		K4	Soil F	Permeability Class	5
	K4 (in/hr)=		13.960		K4	Soil F	Permeability Class	;
	K4 (in/hr)=		13.879		K4	Soil F	Permeability Class	5
	. ,	AVERAGE	14.153		K4			
9	I hereby cer	tify that the info	ormation fu	rnished on th	his form i	s true a	and accurate.	

Signature of Soil Evaluator

Junettal Di

Date 9/28/21

Signature of Professional Engineer

Lic. #

# TUBE PERMEAMETER TEST #2 (From Soil Boring #2)

## BLOCK 106, LOT 8; CITY OF NORTHFIELD; ATLANTIC COUNTY

1	Test No.		2	Replicate	(letter)	В	Date Collected	9/28/21
2	Material Te	ested		Fill	Native	Soil Te	st- depth	40"
3	Type of sa	mple:		 Undisturb	ed	XX	Disturbed	
4	Sample dir	nensions: Ins	ide radiu	s of sample	tube, R	(cm)		
	Length of s	sample, L (inc	hes)			. ,	-	4.00
5	Bulk densit	ty determination	on (distu	rbed sample	es only):		-	
	Sample we	eight (grams)	·				630	
	Sample vo	lume (L x 2.54	4 cm/in. >	k (3.14r2)			463.0928	
	Bulk densit	ty (Sample we	eight/San	nple volume	e)		1.360418473	
6	Standpipe	Used:			Yes		Х	No
	Indicate Int	ternal Radius						
7	Height of w	ater above rii	m of test	basin, inch	e Refer to	o follow	ing table	
	At the begi	nning of each	test inte	rval,H1	Refer to	o follow	ing table	
	At the end	of each test in	nterval H	2	Refer to	o follow	/ing table	
			Rat	te of wate	er level	drop		
			Tim	e, Start	Time,	End	Length of Test	
	H1	H2	of	Test	of T	est	Interval, T,	
	(in)	(in)	Interva	al, T1 (min)	Interval,	T2 (mi	minutes	
Test 1	4.50	3.50	0.00		4.30		4.30	
Test 2	4.50	3.50	0.00		4.33		4.33	
Test 3	4.50	3.50	0.00		4.40		4.40	
Test 4	4.50	3.50	0.00		4.32		4.32	
Test 5	4.50	3.50	0.00		4.15		4.15	
8	Calculatio	n of Permeal	oility:					
	K, (in/hr)=		60 min/h	r*L(in)/T(mi	in)*Ln (H	1/H2)		
	K1 (in/hr)=		14.027		K4	Soil F	ermeability Class	
	K2 (in/hr)=		13.930		K4	Soil F	ermeability Class	
	K3 (in/hr)=		13.708		K4	Soil F	Permeability Class	
	K4 (in/hr)=		13.962		K4	Soil F	Permeability Class	
	K4 (in/hr)=		14.534		K4	Soil F	ermeability Class	
-		AVERAGE	14.032		K4	_	_	
9	I hereby cer	tify that the info	ormation f	urnished on	this form	is true a	and accurate.	
					$\bigcirc$			
				0.16	12.			

Signature of Soil Evaluator

muetaros

Date 9/28/21

Signature of Professional Engineer

Lic. #

# Appendix E

# NJDEP Nonstructural Points System Spreadsheet

NJDEP Nonstructural Strategies Points System (NSPS)

Version: January 31, 2006

Note: Input Values in Yellow Cells Only

Project:	Medical Office Building
Date:	December 15, 2021
User:	DeBlasio & Associates
Notes:	

# Step 1 - Provide Basic Major Development Site Information

A. Specify Total Area in Acres of Development Site Described in	ו Steps 2 and 3 =		0.7	Acres			
B. Specify by Percent the Various Planning Areas Located withi	n the Developme	nt Site:					
State Plan Planning Area:	PA-1	PA-2	PA-3	PA-4	PA-4B	PA-5	Total % Area

100.0% Note: See User's Guide for Equivalent Zones within Designated Centers and the NJ Meadowlands, Pinelands, and Highlands Districts 100.0% Percent of Each Planning Area within Site:

	Points	0	331	0	0	0	0	0	0	0	0	0	0	0	0	0		0.7	100.0%
	I																	Total Area:	Total % Area:
Use/Cover	Subtotals	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	r		
Each HSG	HSG D																,	0.0	0.0%
r in Acres for E	HSG C																	0.0	0.0%
Jse/Land Cove	HSG B		0.7															0.7	100.0%
Specify Land I	HSG A																,	0.0	0.0%
	Land Use/Land Cover Description	Wetlands and Undisturbed Stream Buffers	Lawn and Open Space	Brush and Shrub	Meadow, Pasture, Grassland, or Range	Row Crop	Small Grain and Legumes	Woods - Indigenous	Woods - Planted	Woods and Grass Combination	Ponds, Lakes, and Other Open Water	Gravel and Dirt	Porous and Permeable Paving	Directly Connected Impervious	Unconnected Impervious with Small D/S Pervious	Unconnected Impervious with Large D/S Pervious		HSG Subtotals (Acres):	HSG Subtotals (%):
Site	Segment	-	2	ო	4	5	9	7	80	o	10	11	12	13	14	15			

331

**Total Existing Site Points:** 

331

Points Subtotal:

# Step 2 - Describe Existing or Pre-Developed Site Conditions

A. Specify Existing Land Use/Land Cover Descriptions and Areas:

	Points	0	179	0	0	0	0	0	0	0	0	0	0	0	46	0
/er	sl															
Use/Co	Subtota	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Each HSG	HSG D															
er in Acres for I	HSG C															
Use/Land Cov	HSG B		0.4											0.3		
Specify Land	HSG A															
	Land Use/Land Cover Description	Wetlands and Undisturbed Stream Buffers	Lawn and Open Space	Brush and Shrub	Meadow, Pasture, Grassland, or Range	Row Crop	Small Grain and Legumes	Woods - Indigenous	Woods - Planted	Woods and Grass Combination	Ponds, Lakes, and Other Open Water	Gravel and Dirt	Porous and Permeable Paving	Directly Connected Impervious	Unconnected Impervious with Small D/S Pervious	Unconnected Impervious with Large D/S Pervious
Site	Segment	-	2	ო	4	5	9	7	80	o	10	11	12	13	14	15

Step 3 - Describe Proposed or Post-Developed Site Conditions

A. Specify Proposed Land Use/Land Cover Descriptions and Areas:

 HSG Subtotals (Acres):
 0.0
 0.7

 HSG Subtotals (%):
 0.0%
 100.0%

Points Subtotal: 224

0.7 100.0%

Total Area: Total % Area:

0.0 0.0%

0.0 0.0%





# Appendix F

# Low Impact Development Checklist

# New Jersey Stormwater Best Management Practices Manual

February 2004

### APPENDIX A

# Low Impact Development Checklist

# A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

According to the NJDEP Stormwater Management Rules at N.J.A.C. 7:8, the groundwater recharge, stormwater quality, and stormwater quantity standards established by the Rules for major land development projects must be met by incorporating nine specific nonstructural stormwater management strategies into the project's design to the maximum extent practicable.

To accomplish this, the Rules require an applicant seeking land development approval from a regulatory board or agency to identify those nonstructural strategies that have been incorporated into the project's design. In addition, if an applicant contends that it is not feasible to incorporate any of the specific strategies into the project's design, particularly for engineering, environmental, or safety reasons, the Rules further require that the applicant provide a basis for that contention.

This checklist has been prepared to assist applicants, site designers, and regulatory boards and agencies in ensuring that the nonstructural stormwater management requirements of the Rules are met. It provides an applicant with a means to identify both the nonstructural strategies incorporated into the development's design and the specific low impact development BMPs (LID-BMPs) that have been used to do so. It can also help an applicant explain the engineering, environmental, and/or safety reasons that a specific nonstructural strategy could not be incorporated into the development's design.

The checklist can also assist municipalities and other land development review agencies in the development of specific requirements for both nonstructural strategies and LID-BMPs in zoning and/or land use ordinances and regulations. As such, where requirements consistent with the Rules have been adopted, they may supersede this checklist.

Finally, the checklist can be used during a pre-design meeting between an applicant and pertinent review personnel to discuss local nonstructural strategies and LID-BMPs requirements in order to optimize the development's nonstructural stormwater management design.

Since this checklist is intended to promote the use of nonstructural stormwater management strategies and provide guidance in their incorporation in land development projects, municipalities are permitted to revise it as necessary to meet the goals and objectives of their specific stormwater management program and plan within the limits of N.J.A.C. 7:8.

# Low Impact Development Checklist

# A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

Municipality:	
County	Date
County	Date
Review board or agency:	
Proposed land development name:	
Lot(s):	Block(s):
Project or application number:	
Applicant's name	
Applicant's address:	
Telephone:	Fax:
Email address:	
Designer's name:	
Designer's address:	
Telephone:	Fax:
Fmail address:	
Linui udultoo	

# Part 1: Description of Nonstructural Approach to Site Design

In narrative form, provide an overall description of the nonstructural stormwater management approach and strategies incorporated into the proposed site's design. Attach additional pages as necessary. Details of each nonstructural strategy are provided in Part 3 below.



# Part 2: Review of Local Stormwater Management Regulations

Title and date of stormwater management regulations used in development design:

Do regulations include nonstructural requir	rements? Yes:	No:
If yes, briefly describe:		
List LID-BMPs prohibited by local regulatio	ns:	
Pre-design meeting held? Yes:	Date:	No:
Meeting held with:		
Pre-design site walk held? Yes:	Date:	No:
Site walk held with:		
Other agencies with stormwater review juri	sdiction:	
Name:		
Required approval:		
Name:		
Required approval:		
Name:		
Required approval:		

# Part 3: Nonstructural Strategies and LID-BMPs in Design

### 3.1 Vegetation and Landscaping

Effective management of both existing and proposed site vegetation can reduce a development's adverse impacts on groundwater recharges and runoff quality and quantity. This section of the checklist helps identify the vegetation and landscaping strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to help maintain existing recharge rates and/or minimize or prevent increases in runoff quantity and pollutant loading.

А.	Has an inventory of existing sit	te vegetation bee	n performed? Yes	s:	No:
	If yes, was this inventory a fact	or in the site's la	yout and design?	Yes:	_ No:
B.	Does the site design utilize any	of the following	g nonstructural LI	D-BMPs?	
	Preservation of natural areas?	Yes:	No:	If yes, specify %	of site:
	Native ground cover?	Yes:	No:	If yes, specify %	of site:
	Vegetated buffers?	Yes:	No:	If yes, specify %	of site:
C.	Do the land development regu	lations require th	nese nonstructura	l LID-BMPs?	
	Preservation of natural areas?	Yes:	No:	If yes, specify %	of site:
	Native ground cover?	Yes:	No:	If yes, specify %	of site:
	Vegetated buffers?	Yes:	No:	If yes, specify %	of site:
D.	If vegetated filter strips or buff	ers are utilized, s	specify their funct	ions:	
	Reduce runoff volume increase	es through lower	runoff coefficient	: Yes:	No:
	Reduce runoff pollutant loads	through runoff t	reatment:	Yes:	_ No:

Yes: _____ No: _____

Maintain groundwater recharge by preserving natural areas:

### 3.2 Minimize Land Disturbance

Minimizing land disturbance is a nonstructural LID-BMP that can be applied during both the development's construction and post-construction phases. This section of the checklist helps identify those land disturbance strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to minimize land disturbance and the resultant change in the site's hydrologic character.

А.	Have inventories of existing site soils and slopes been performed?	Yes:	No:
	If yes, were these inventories factors in the site's layout and design	n? Yes:	No:
B.	Does the development's design utilize any of the following nonstr	uctural LID-BMPs?	
	Restrict permanent site disturbance by land owners?	Yes:	No:
	If yes, how:		
	Restrict temporary site disturbance during construction?	Yes:	No:
	If yes, how:		
	Consider soils and slopes in selecting disturbance limits?	Yes:	No:
	If yes, how:		
C.	Specify percentage of site to be cleared:	Regraded:	
D.	Specify percentage of cleared areas done so for buildings:		
	For driveways and parking: For road	dways:	

Specify site's h	ydrologic soil group (H	SG) percentages:		
HSG A:	HSG B:	HSG C:	HSG D:	
Specify percen	tage of each HSG that v	vill be permanently disturb	ed:	
HSG A:	HSG B:	HSG C:	HSG D:	
ocating site o isturbance wi echarge rates a vhat other prac	listurbance within are thin areas with greater and reduce runoff volu ctical measures if any ca	as with less permeable a permeable soils (HSG A me increases. In light of n be taken to achieve this?	soils (HSG C and D) and B) can help mainta he HSG percentages in	and minim ain groundv F and G al
ocating site o isturbance wi echarge rates a vhat other prac	disturbance within are thin areas with greater and reduce runoff volu ctical measures if any ca	as with less permeable permeable soils (HSG A me increases. In light of n be taken to achieve this?	soils (HSG C and D) and B) can help mainta he HSG percentages in	and minim ain groundv F and G al
ocating site o isturbance wi echarge rates a hat other prac	listurbance within are thin areas with greater and reduce runoff volu ctical measures if any ca	as with less permeable a permeable soils (HSG A me increases. In light of n be taken to achieve this?	soils (HSG C and D) and B) can help mainta he HSG percentages in	and minim ain groundv F and G al
ocating site of isturbance with echarge rates a that other prace	disturbance within are thin areas with greater and reduce runoff volu ctical measures if any ca	as with less permeable a permeable soils (HSG A me increases. In light of n be taken to achieve this?	Soils (HSG C and D) and B) can help mainta he HSG percentages in	and minim ain groundy F and G al
ocating site of isturbance with echarge rates a what other prace what other prace Does the site in f yes, discuss	listurbance within are thin areas with greater and reduce runoff volu ctical measures if any ca nclude Karst topography measures taken to limit	as with less permeable s permeable soils (HSG A me increases. In light of n be taken to achieve this?	Soils (HSG C and D) and B) can help mainta he HSG percentages in	and minim ain groundy F and G al
ocating site of isturbance with echarge rates a what other prace Does the site in If yes, discuss	disturbance within are thin areas with greater and reduce runoff volu ctical measures if any ca nclude Karst topography measures taken to limit	as with less permeable a permeable soils (HSG A me increases. In light of n be taken to achieve this? /? Karst impacts:	Soils (HSG C and D) and B) can help mainta the HSG percentages in Yes: No:	and minim ain groundv F and G al

New Jersey Stormwater BMP Manual • Appendix A: Low Impact Development Checklist • February 2004 • Page A-7

### 3.3 Impervious Area Management

New impervious surfaces at a development site can have the greatest adverse effect on groundwater recharge and stormwater quality and quantity. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into a proposed development's design to comprehensively manage the extent and impacts of new impervious surfaces.

A. Specify impervious cover at site: Existing: _____ Proposed: _____

B. Specify maximum site impervious coverage allowed by regulations:

C. Compare proposed street cartway widths with those required by regulations:

Type of Street	Proposed Cartway Width (feet)	Required Cartway Width (feet)
Residential access – low intensity		
Residential access – medium intensity		
Residential access – high intensity with parking		
Residential access – high intensity without parking		
Neighborhood		
Minor collector – low intensity without parking		
Minor collector – with one parking lane		
Minor collector – with two parking lanes		
Minor collector – without parking		
Major collector		

D. Compare proposed parking space dimensions with those required by regulations:

Proposed: _____ Regulations: _____

E. Compare proposed number of parking spaces with those required by regulations:

Proposed: _____ Regulations: _____

F.	5. Specify percentage of total site impervious cover created by building	igs:
	By driveways and parking: By roadways:	
G.	G. What design criteria and/or site changes would be required to redu	tce the percentages in F above?
H.	I. Specify percentage of total impervious area that will be unconnecte	d:
	Total site: Buildings: Driveways and parking:	Roads:
т		
1.	Specify percentage of total impervious area that will be porous:	
	Total site: Buildings: Driveways and parking:	Roads:
J.	. Specify percentage of total building roof area that will be vegetated	
K.	C. Specify percentage of total parking area located beneath buildings:	
L.	Specify percentage of total parking located within multi-level parki	ng deck:

### 3.4 Time of Concentration Modifications

Decreasing a site's time of concentration (Tc) can lead directly to increased site runoff rates which, in turn, can create new and/or aggravate existing erosion and flooding problems downstream. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to effectively minimize such Tc decreases.

When reviewing Tc modification strategies, it is important to remember that a drainage area's Tc should reflect the general conditions throughout the area. As a result, Tc modifications must generally be applied throughout a drainage area, not just along a specific Tc route.

A. Specify percentage of site's total stormwater conveyance system length that will be:

Storm sewer: _____ Vegetated swale: _____ Natural channel: _____

Stormwater management facility: _____ Other: _____

Note: the total length of the stormwater conveyance system should be measured from the site's downstream property line to the downstream limit of sheet flow at the system's headwaters.

B. What design criteria and/or site changes would be required to reduce the storm sewer percentages and increase the vegetated swale and natural channel percentages in A above?

C. In conveyance system subareas that have overland or sheet flow over impervious surfaces or turf grass, what practical and effective site changes can be made to:

Decrease overland flow slope: _____

Increase overland flow roughness:

### **3.5 Preventative Source Controls**

The most effective way to address water quality concerns is by pollution prevention. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to reduce the exposure of pollutants to prevent their release into the stormwater runoff.

A. Trash Receptacles

	Specify the number	of trash receptac	les provided:								
	Specify the spacing										
	Compare trash recep										
	Proposed:	ed: Regulations:									
B.	Pet Waste Stations										
	Specify the number	of pet waste stati	ons provided:								
	Specify the spacing										
	Compare pet waste	l by regulations:									
	Proposed:		Regulations:								
C.	Inlets, Trash Racks, Specify percentage c	and Other Devic of total inlets that	es that Prevent Discl comply with the NJ	narge of Large Trash and I PDES storm drain inlet cr	Debris iteria:						
D.	Maintenance										
	Specify the frequence	y of the followin	g maintenance activi	ties:							
	Street sweeping:	Proposed:		_ Regulations:							
	Litter collection:	Proposed:		_ Regulations:							
	Identify other storm debris:	nwater managem	ent measures on th	e site that prevent discha	arge of large trash and						

E. Prevention and Containment of Spills

Identify locations where pollutants are located on th from being exposed to stormwater runoff:	ne site, and the features that prevent these pollutants
Pollutant:	Location:
Feature utilized to prevent pollutant exposure harm	ful accumulation or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:

# Part 4: Compliance with Nonstructural Requirements of NJDEP Stormwater Management Rules

1. Based upon the checklist responses above, indicate which nonstructural strategies have been incorporated into the proposed development's design in accordance with N.J.A.C. 7:8-5.3(b):

No.	Nonstructural Strategy	Yes	No
1.	Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.		
2.	Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces.		
3.	Maximize the protection of natural drainage features and vegetation.		
4.	Minimize the decrease in the pre-construction time of concentration.		
5.	Minimize land disturbance including clearing and grading.		
6.	Minimize soil compaction.		
7.	Provide low maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers, and pesticides.		
8.	Provide vegetated open-channel conveyance systems discharge into and through stable vegetated areas.		
9.	Provide preventative source controls.		

2. For those strategies that have not been incorporated into the proposed development's design, provide engineering, environmental, and/or safety reasons. Attached additional pages as necessary.

# Appendix G

Groundwater Recharge Spreadsheet & Storage Calculations

	b			Annual Recharge (cu.ft)	1	•														Total Annual Recharge (cu.ft)	•	14,723				
lan	ice Buildir			Annual Recharge (in)	0.0	0.0														Total Annual Recharge (in)	0.0	। 0ta। Impervious Area (sq.ft)	(cubic feet)		(in)	(in)
Major Site F	Medical Offi	12/15/21	d Conditions	Soil	Berryland	Berryland															on 🔶	100%	0	ea averages)	0.00	0.00
Project Name:	Description:	Analysis Date:	Post-Develope	TR-55 Land Cover	Open space	Impervious areas															ge Requirements Calculati	charge to Preserve =	ual Recharge Deficit=	rameters Calculations (ar	DRWC=	EDRWC=
				Area (acres)	0.397	0.338	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7	Recharç	Annual Re	ent Annu	<mark>ency Pa</mark>	(in)	(in)
				Land Segment	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	Total =	Annual	eveloped /	∕elopm∈	<mark>ge Effici</mark>	.00	.00
ל-32)		1																				% of Pre-D	Post-De	Rechar	RWC= 0	ERWC = 0
(based on GSI				Annual Recharge (cu.ft)		•														Total Annual Recharge (cu-ft)	•					
alysis (	Climatic Factor	1.18		Annual Recharge (in)		0.0														Total Annual Recharge (in)	0.0		p of the table	ill not be	the Land Cover.	
charge Ar	Average Annual P (in)	38.4	itions	Soil		Berryland																litions Tables	Soil. Start from the to	ries. Rows with A=0 w	Impervious Areas" as	these areas.
Annual Groundwater Rec	Select Township 🧅	ATLANTIC CO., NORTHFIELD CITY	Pre-Developed Cond	TR-55 Land Cover		Open space																Pre-Development and Post-Development Cond	ist enter the area, then select TR-55 Land Cover, then select (	oon't leave blank rows (with A=0) in between your segment ent	llations. For impervious areas outside of standard lots select "	reas are only required if an infiltration facility will be built within
Y iter	iet	2003		Area (acres)	0	0.735	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7		to fill the	l segment, fir	downward. D	used in calcu	mpervious aı
<b>e</b>	a 60	2		<b>H</b>	-	N	3	4	40	9	N	m	-	-	-			1.00	100		1	e	2	ñ	1	-

															ed or undetermined		olume= deficit volume. The portion	in these calculations. Results are	empty in less than 3 days. For lan <mark>d</mark>	nimal but not zero as determined by	ution of lateral flow and other loss <mark>es</mark> .	al Recharge" sheet to / and then solve for
		ſ		Unit	.⊆	. <u>E</u>	.5	Ē							distribute		make rech v	are ignored	for BMP to	/C will be mir	ing considers	the "Annu P. tion facility
				<u>Value</u>	0.03	0.07	0.0	i0//IC#			SAGES				elected as		are updated to	cupied by BMF	s small enougl	ous areas" RM	nd Cover allow	Aimp" from e to the BM your infiltra
			ameters	<u>Symbol</u>	Qdesign	Pdesign					ECK MES	ž	€ ;	×	.ocation is s		MP dimensions	and the area oc	dBMP selected i	u select "impervi	zone for this La	rvious area " ea is availabl connected to
	n I ype		Recharge Design Para	<u>Parameter</u>	Inches of Runoff to capture	Inches of Rainfall to capture	Recharge Provided Avg. over Imp. Area	Runoff Captured Avg. over imp. Area			<b>CALCULATION CH</b>	Volume Balance->		dEXC Check>	BMP Location> L	OTHER NOTES	Pdesign is accurate only after E	of BMP infiltration prior to filling	sensetive to dBMP, make sure	Segment Location of BMP if you	the soil type and a shallow root	and total proposed impe rom entire impervious are impervious area directly
		-	neters	<u>Unit</u>	. <u>c</u>	.5	Ē		2			unitless	cu.rt		cu.ft	Represents % Infiltration Recharged	%	%	%	%		volume "Vdef" iing the runoff fi ie and Aimp to
C to	nale	ļ	ated Param	<u>Value</u>	0.00	0.00	1.50					-0.05	(43)	arameters		%0.0	76.3%	100.0%	0.0%	0.0%		ficit recharge ement assum ur target valu
Anotherio	Andrysis 4 2 4 5 1 2 4	LZ/GL/ZL	acity Calcul	<u>Symbol</u>	ERWC	EDRWC	RERWC				Par ameters	Aratio	VBMP	alculated h								es of total de charge requir set Vdef to yo I.
		aing	Root Zone Water cap	<u>Parameter</u>	Empty Portion of RWC under Post-D Natural Recharge	ERWC Modified to consider dEXC	Empty Portion of RWC under Infilt. BMP				<b>BMP</b> Calculated Size	ABMP/Aimp		System Pertormance	Annual BMP Recharge Volume	Avg BMP Recharge Efficiency	%Rainfall became Runoff	%Runoff Infiltrated	%Runoff Recharged	%Rainfall Recharged		adsheet assigns the valu AP to handle the entire red e recharge requirement, s efault Vdef & Aimp" buttor
5	<u>II</u> ffion Dui	TICE BUI		<u>Unit</u>	sq.ft	i	Ē	'n	unitless						cu.ft	sq.ft	in	in	no units	Ë	in	fault the spre or a single BN only part of th on clik the "D
<b>Decembric</b>		<u>Medical C</u>		<u>Value</u>	-790.0	9.0	-24.0	24.0	0				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	W orksheet	1	14,723	0.00	0.00	1.18	38.4	0.0	olumes: By de ows solution fo to recharge o ult configuratio
			rameters	<u>Symbol</u>	ABMP	dBMP	dBMPu	dEXC	SegBMP					Kecharge	Vdef	Aimp	RWC	DRWC	C-factor	Pavg	dr	echarge vo ge. This allo or a LID-IMP to the defau
Droioot Namo	Maiar Cita Dian	Major Site Plan	Recharge BMP I nput Pa	<b>Parameter</b>	BMP Area	BMP Effective Depth, this is the design variable	Upper level of the BMP surface (negative if above ground)	Depth of lower surface of BMP, must be>=dBMPu	Post-development Land Segment Location of BMP	Input Zero if Location is distributed or undetermined				Parameterstrom Annua	Post-D Deficit Recharge (or desired recharge volume)	Post-D Impervious Area (or target Impervious Area)	Root Zone Water Capacity	RWC Modified to consider dEXC	Climatic Factor	Average Annual P	Recharge Requirement over Imp. Area	How to solve for different "Vdef" and "Aimp" on this pe To solve for a smaller BMP ABMP or dBMP. To go back

# Appendix H

# Groundwater Mounding Calculations



1.000 -0.000 -0

### Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

10

20

30

40

50

# Appendix I

Drainage Area Maps



